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ELECTROHYDRODYNAMIC DEFORMATION AND
BURST OF LIQUID DROPS
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In 60 Hz electric fields, liquid drops suspended in a second immiscible liquid deformed into prolate
spheroids oriented in the direction of the field in 22 drop/medium combinations studied experimentally.
In steady fields, oblate or prolate spheroids were formed depending upon the dielectric constants and
resistivities of the drop and medium. In systems yielding oblate spheroids, a critical frequency existed at
which the drop remained spherical at all field strengths. Electrohydrodynamic streaming near the surface
of the drop occurred as predicted by Taylor.

A theory, valid for both steady and alternating fields, was developed which predicts the conditions
leading to oblate and prolate spheroids and which reduces to Taylor’s equations for conducting dielectrics
in steady fields and to the equations for perfect dielectrics in steady and alternating fields. The theory
explains the general types of deformation and electrohydrodynamic flow which were observed and
predicts several interesting new modes of behaviour. In most cases the measured deformations were
greater than calculated from the theory; various explanations for this discrepancy are advanced, but
no definite conclusions are reached.

At high field strengths the drops burst in two basically different ways which we have designated as
electric and electrohydrodynamic burst, the first caused by electric stresses alone and the second by a
combination of electric and hydrodynamic stresses.
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LisT oF symMBOLS
= € X1 Ky
complex quantity defined by equation (11); its complex conjugate
radius of the spherical drop; principal radii of curvature of the deformed
drop surface
complex constants of integration characterizing Vi* and V5
constants of integration characterizing i
axes of the deformed drop parallel and normal to E; steady values
= (di—d3)[(di+d3), total drop deformation at frequency v; its steady and
oscillatory components
undisturbed oscillating electric field; its amplitude and root-mean-square
value
complex electric field inside (j = 1) and outside (j = 2) the drop; its real,
radial and transverse components at 7 = b
limiting value of the electric field calculated from equation (83)
steady and oscillatory total normal stress at r = b
radial component of the electric stress at r = b; steady and oscillatory
components; complex quantity defined by equation (22a)
transverse component of the electric stress at » = b; steady and oscillatory
components; complex quantity defined by equation (225)
functions defined by equations (84); least of these functions
complex quantity defined by equation (60) and its complex conjugate;
complex quantity defined by equation (59)
real quantity related to Dy and defined in equation (635)
= Wbps|y
dielectric constants of the drop and of the medium
parameter defined by equation (77); experimental value
hydrodynamic stress components for an axisymmetric flow field in the
radial and transverse directions; inside (j = 1) and outside (j = 2) the
drop for the fluid flow generated by Fy,; and for the fluid flow generated
By
Legendre polynomial of order n
= K,/K,
total electric charge flux per unit length of surface
spherical polar coordinates
= X1/Xa
functions defined by equations (81)
time
total velocity field inside (j= 1) and outside (j=2) the drop; total
external transverse component; components generated by Fg, and by
Fp; radial and transverse components
quantity defining u'; its steady and oscillatory components; quantity
defining u't
electric potentials, complex time-dependent values and complex amplitude
both inside (j = 1) and outside (j = 2) the drop
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ELECTROHYDRODYNAMIC DEFORMATION 297
Wg, W constants defining F;, and given by equations (21)
W, W, radial and transverse components of a general axisymmetric flow field
o, o, ot phase angles respectively defined in equations (155), (364), (36¢) and (634)
0% interfacial tension
€ permittivity of free space
A AL, A, viscosity radio = u/u,; functions of A defined by equations (58)
15 gy Mo viscosity; value for the drop and for the medium respectively
ViV 0 frequency of the field; critical value; angular frequency = 2mv
P density of the liquid
g0, 0% charge density on the drop surface; related complex quantities
D0, total discriminating function; steady value
X1s X253 X1z resistivities of the drop and of the medium; surface resistivity
2 Stokes steam function
Re symbol denoting the operation of taking the real part of the complex values

1. INTRODUCTION

When a fluid, containing an immiscible fluid drop, is subjected to an electric field, the drop
deforms at low fields into a prolate or an oblate spheroid whose axis of rotation is in the field
direction and usually bursts at high fields (Wilson & Taylor 1925; Buchner & Van Royen 1929;
O’Konski & Gunther 1955; O’Konski & Harris 1957; Kao 1961; Schwarz 1962; Allan & Mason
1962; Garton & Krasucki 1964; Taylor 1964, 1966; Iribarne & Mason 1967).

When the medium is a perfect dielectric, deformation into a prolate spheroid and subsequent
burst of the drop are readily explained by a straightforward theoretical analysis in which the
normal electric stress at the interface is balanced by the capillary pressures generated by the
changes in curvature of the drop surface (Nayyar & Murthy 1959; Allan & Mason 1962;
Garton & Krasucki 1964); an identical result is obtained from energy equations (O’Konski &
Thacker 1953; O’Konski & Gunther 1955; O’Konski & Harris 1957).

When an oblate spheroid is formed it has been noted that the medium is electrically conducting
(Buchner & Van Royen 1929; Allan & Mason 1962). Taylor (1966) recognized that in this
circumstance there is a transverse electric stress (absent when the medium is a perfect dielectric)
at the interface which generates flow inside and outside the drop, and developed an electro-
hydrodynamic theory which takes into account the additional stresses associated with the flow.
The theory predicts: (i) the formation of both oblate and prolate spheroids depending upon the
ratios of the dielectric constants, the electric resistivities and viscosities of the two phases; and
(ii) the existence of critical values of the ratios at which the drop remains spherical. Reasonably
convincing qualitative evidence of the general validity of this theory, including the predicted
patterns of flow, has been presented based on experiments conducted in zero frequency (v = 0)
fields (Taylor 1964; Melcher & Taylor 1969).

Experiments at » = 0 are rendered difficult by electrophoretic migration of the drops when
these acquire a small net electric charge. Since electrophoresis is eliminated when » > 0, we
decided to repeat some of the earlier experiments of Allan & Mason (1962) using both » = 0 and
v = 60Hz fields. To our surprise prolate spheroids were always formed at v= 60Hz. This
suggested that in systems which formed oblate spheroids at » = 0 there should exist a critical
frequency v, (which in these cases was less than 60 Hz) at which there is no deformation no

27-2
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matter how high the field; this was confirmed in experiments in which v was varied contin-
uously. A number of other differences in modes of deformation and burst between v = 0 and
v = 60Hz were observed which could not be explained by Taylor’s theory which, strictly
speaking, applies only at v = 0.

After completing the experiments, we developed a generalized electrohydrodynamic theory for
alternating fields which reduces to (i) Taylor’s (1966) theory at v = 0 and (ii) Allan & Mason’s
(1962) theory when the phases are perfect dielectrics and which predicts the existence of v, under
certain conditions. Following a line of reasoning similar to that of Taylor (1966) developed for
v = 0, we assume that, in the general case, both drop and medium are leaky dielectrics each
behaving as a perfect dielectric in parallel with an ohmic resistor. We then calculate the oscillating
potentials inside and outside the drop, which we assume is nearly spherical and in turn the
electric stress at the interface, expressing the normal and transverse components as sums of a
steady and an oscillating part. The transverse and the oscillating normal electric stress generate
flow with associated hydrodynamic stresses at the interface which are calculated from the velocity
field made to satisfy the Navier—Stokes equation, inertial effects being neglected. The total
normal stress, the sum of the electric and hydrodynamic components, is then used to calculate
the drop deformation as the sum of a steady and oscillating part.

The theory, which explains most the of experimental findings described later, will now be
presented in detail.

2. THEORETICAL PART
2.1, Electric stress at the drop surface

We consider a drop of radius # which carries no net electric charge and is suspended in a
neutrally buoyant condition in an immiscible fluid subject to a uniform electric field whose
strength F, far from the drop, varies with time ¢ according to

E = I, coswt, (1)

where @ = 2y is the angular field frequency of the field, £ is the peak value of the field when
v > 0 and the steady value when v = 0. We assume that the dielectric constants K; and K, and
the ohmic resistivities y; and y, of the drop and medium respectively are independent of ».
‘Taking the centre of the drop as the origin of the spherical polar coordinates 7, # (figure 1a),
in the absence of space charge the electric potentials inside (V;) and outside (V) the drop both

satisfy the Laplace equation VI =0 (j=1,2), 2)

with the following boundary conditions: (i) the electric potential tends to ( — Ercos ) as r— oo
and is bounded at the drop centre; (i) the difference between the electric displacements at the
interface is equal to the surface charge density o; (iii) V; = Vyatr = b and (iv) the rate of increase of
o is equal to the net flow of charge into the interface, transport of charge along the interface
being neglected. The validity of the last assumption, which was made also by Taylor (1966) and
Melcher & Taylor (1969), will be examined later. Finally the drop is assumed to remain nearly
spherical so that the present theory gives a first order approximation to the deformation.

"T'o simplify the calculations we introduce the complex electric potentials V' and ¥} inside and
outside the drop such that their real parts are respectively V; and V, and both their real and
imaginary parts separately satisfy equation (2). Writing

Vi=V¥ew and V}= Vi eiot, (3)
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the time-independent complex quantities Vi* and V5 are defined by the following relations
expressing in complex form the boundary conditions mentioned above:

Vst > — Eyrcos0 as r->00; (4a)
=V at 7 ="b; (40
3 s
eoKz%—eoKl%V;‘Z —o* at 7 =b; (4¢)
1Lovy  1ovy .o .

L 0Va L 9Vy 7. 4
Xe Or X1 Or et at 7 =10; (4d)
Vi bounded at =0, (4¢)
where o* is defined by o' = o*elot, (5)

the real part of the complex charge density ¢’ being equal to the charge density o on the drop
surface. The permittivity of free space ¢, = 8.84 x 10~12m~252 is required in the m.k.s. system
(SI) of units which we employ in the theory.

(@) )

®

D, = ﬁfﬁ% D,= di~dy
di+d; d+dy

Ficure 1. (a) Polar coordinates (r,0) in an electric field E = —VV directed toward decreasing potentials V. The
steady (D,) and total (D;) deformation parameters of the drop are defined by the diameters d;,d, and d;,d;,
respectively. Steady oblate (D, < 0) and prolate (D, > 0) deformed drops are shown by the continuous lines
respectively from left to right of the figure, the dotted lines indicating a transient shape during the oscillation
about the steady value.

(b) Schematic representation of the instantaneous charge distribution and of the direction of ¥y, at the
interface given by equations (154) and (205) for various values of the product (Rg). When Rg > 1 the hemi-
sphere facing the negative electrode becomes negatively charged, Fy, (> 0) inducing a pole-to-equator flow; the
reverse occurs when Rg < 1, Fy,(< 0) inducing an equator-to-pole flow. When Rg=1, 0 = 0, Fy, = 0 and
there is no flow. For a complete description of the flow pattern see figure 5.

Eliminating o * from equations (4¢) and (4d) yields

ovE (L. \avy }
) -”37"' = (5{‘1 —I—l(l)(;OKl) ‘3—7"‘ . (())

Since Vi and V5" satisfy the Laplace equation, they may be written as (Smythe 1959):

1 .
(E +iwey Ky

2

VE =

Kl

(Clur + Csy 1) F, (cos 0) ; (7a)
0

s

Vs =

S
1M s

. (Curm+ Cfir= 1) P, (cos 0), (76)


http://rsta.royalsocietypublishing.org/

A
A
PN

L9

A

Py
/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

JA \
0

4 Y
Y & |
A )

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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where Cit, Csf, Csy and Cf, are time-independent complex quantities and P,(cos®) is the
Legendre polynomial of order z.
From the boundary conditions given by equations (4a) and (4¢) it follows that

Csi, = 0 for all n; (84)

C¥ = 0forn+ 1and G5 = — E,cos 0. (8b)

As a solution we try: Vi = Cf rcos 0; (9a)
Vs = (= Eyr+ Ciir=2) cos 0. (90)

Substituting equations (9) into the remaining boundary conditions given by equations (45) and
(6), we obtain

R+iaw
where A= BRI ¥ia(g+2) (11)

is a complex quantity determined by the parameters

X1 K, .
R = X_;: q= f:, a= €0](2)(19 (12)
where the resistivity and dielectric constant ratios R and ¢ are dimensionless and «¢ has the
dimension of time.

Defining the complex electric fields Ef and Ej, inside and outside the drop, such that
E{=-VV] and E;=-VV,, (13)

from equations (3), (9) and (10) it follows that the real parts of the electric field components at
7 =

the drop surface (r = b) are given by

Ey, = 3E,cos O Re (Aeivt); (14a)
E,, = —3FE,cos0Re[(24 —1)eivt], (140)
Eyy = Eyy = —3E,sin 0 Re (delvt), (14¢)

where Eyy, E;, and E,,, E,, are the radial and transverse components of E; and Ej respectively,
the symbol Re denoting the operation of taking the real part of the complex values.
The expression for o* follows from equations (4¢), (9), (10) and (11) so that, since o = Re
(o*el*)) we obtain
o= 36y Ky Ly(1 — Rg) cos 0
VIR +1)2+ dfwi(g+2)%

cos (wt—et,), (154)

where a, = tan~! (%%{13)) ; 0<a, <4 (150)

Equation (154) shows that the total charge on the surface is zero, that o decreases with in-
creasing frequency when all the other parameters remain fixed, and that the drop hemisphere
facing the positive electrode becomes positively charged and that facing the negative electrode
becomes negatively charged for Rg > 1 and vice versa for Rg < 1; when Rg = 1, o = 0 over the
whole surface. This is shown schematically in figure 1.
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The electric stress components at the interface are given by the well-known formulas ( Jeans
1960):
Frlv = %€0K2{E%r_ %0 - q<E%I - E%&)L (]6)

Fg, = ey Ky Eoy( By, — qEy,), (17)

I}, and Fy, being the normal and transverse components of the electric stress, taken to be positive
in the direction of increasing r and 0 respectively.

Substituting equations (14) into equations (16) and (17) we obtain cach stress as the sum of a
steady component F,, or Fy,, and an alternating or time-dependent component, F,, or Fyy of
frequency 2, given by

F;’V:F;‘V+F;‘T’ (18)
FéV:F0u+F0T7 (]9)
—9 o[ (R2—2gR*+1) + 2% (q—1)*] oy .
where E, = 4€0K2E0[ BRA 17+ @0?(q + 2)° cos? 0 + wg; (204)
R(Rg-1) .
- 9. 2 2]

F,, =3¢, K, L3 [(2R+ 12+ a0 (g + 2)2] sin @ cos & (20)

Fop = 360K, B3[Re(FF ¢91)] cos 0 -+ (200)

Fyr = 36, Ky E3(Rg — 1) [Re (Fjf e?t)] sin 0 cos 0 (204)

and wg and wq are steady and oscillatory #-independent quantities given by

96K, E3(g—1) (R*+ %0?) |

"5 T AR+ ) g+ 2 1)
Wy = §eo K, E3(g — 1) [A?c¥vt 4 F2 =210, (21)
A being the complex conjugate of 4, and
FF = A2(5—2q) —24+1, (224)
R+iaw
Ff = : - 22
* T [(2R+1) +iaw(q+2)]? (220)

From equation (205) we observe that the steady transverse stress /7, at a given point on the
drop surface changes sign at Rg = 1. This in turn influences the direction of the electrically
induced flow on both sides of the interface, as will become clearer later when the velocity field is
derived, so that when

Rq >1, (Fy/cosfsin@) > 0 and flow is pole to equator;
Rg=1 F,, =0 and there is no flow; (23)
Rg <1, (Fylcos0sin0) < 0 and flow is equator to pole.

These criteria, valid for » > 0 for the direction of flow and illustrated in figure 14, are identical to
those derived by Taylor (1966) for v = 0.

We wish now to show that the electric stress at 7 = 4, derived by Allan & Mason (1962) and by
Taylor (1966), for non-conducting and conducting media respectively, can be derived from
equations (18) and (19), the only difference being that mks rather than esu units are employed
here.

(1) X1 Xe =o0: under these conditions the two phases are perfect dielectrics and a = oo; it
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302 S. TORZA,R. G. COX AND S. G. MASON

follows also from equation (4d) that o = 0. Equations (16) and (17) then become (we omit the
details):

D (77,]_)_ ( 2 ‘__1.‘_._) 24
Iy, = 26, K, B} b t2) cos 0+q (1+cos 2wt), (24a)
Fg, = 0. (240)

Equations (24) also follow from equations (20) by letting 0o and assuming that R remains
bounded. The steady component F,( = F},) for w = 0 and F,, for » > 0 become from equation

(244) 9e, K, 22 2
c o 96K Ef (¢—1) 0 __1_
Iog=1F, = 5 (g72)° (cos l9+q 1 (25)

where I, = E,/,/2 s the root-mean-square value of £ for w > 0, and E, = E, for w = 0. Equation
(25) is equivalent to that used by Allan & Mason (1962).
(ii) v = 0(w = 0): here equations (18) and (19) reduce to:

Fy = Fly = Q%Kf {(R2—20R* 1) cos 0+ R2(g — 1)}; (264)
) 9¢, K, % .
Fyy = Fjy = (%)37179 R(Rg—1)sinfcosb, (26 b)

which are the electric stress components derived by Taylor (1966).

2.2 Fluid motion inside and outside the drop

The velocity field inside («,) and outside (u,) the drop is generated by Fy,, and by F,, which
induces oscillations of the drop surface and hence an oscillating flow; from the axial symmetry of
both stresses it follows that u; is axisymmetric about the direction of E.

The radial () and transverse (W) velocity components of an axisymmetric flow field, when
inertial effects are neglected, satisfy the linearized form of the Navier—Stokes equation and may be
written (Goldstein 1938) in terms of the Stokes stream-function yr as

1 _ =l oy
" r25in0 o0’ Wy = rsinf or’ (27)
where i is the solution of

02 sinf 0 1 0\1]2

[8—r2+ 2 80 (sin2 0579)} V=0 (28)
By trial we establish the following solution of equation (28):
y g q

Y= (Csb% 2+ Ceb?+ C,b71r3+ Cgb=3r) sin2 0 cos 0, (29)

where Cy, Cg, C, and (g are integration constants to be determined.
From equations (27) and (29) we obtain:

= (Cbr=2+ Cgb?r=2 4 C,b~r + C3b=3r%) (3 cos? 6 — 1), (30a)

W, = (2C5b0%—*—3C,b~1r — 5C55~3r3) sin 0 cos 0. (300)

The hydrodynamic stress components can be evaluated (Goldstein 1938) from the velocity field
using the equations:

Doy = — 1(8C5 048+ 6C 023 —2C, b1 + Cyb~%2%) (3cos? O —1), (31a)

Pro = —21(8C50% 5+ 3Cb%r—3 + 3C; b~ + 8C5 b—3r2) sin 0 cos 0, (31b)

/t being the viscosity of the fluid.
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ELECTROHYDRODYNAMIC DEFORMATION 303

To simplify the calculations we first determine the velocity field #f caused by Fg, and then uf*
caused by F,r, the total velocity field u; being

u; = uj+uj, (32)

because of linearity of equation (28).

(a) Flow due to Fy,

The boundary conditions are taken to be:

ul—0 at r—oo; (33a)

ui bounded at 7= 0; (330)

u, = ub = 0, ufy = uzp at r=70; (33¢)
Ffy+pho—plho=0 at r=25; (33d)

where uf,, uly and ul,, u}, are the radial and transverse components of the velocity field ¢ (inside)
and u} (outside the drop), and pi,, p.y are the transverse components inside and outside the
drop of the hydrodynamic stress which balances F,.

Applying equations (30) and (31b) to equations (33) we obtain for the velocity components:

uh, = UNb~Yr—b=%3) (3cos?0—1), (344)
ulg = — UN8b~1r — 5b~3r3) sin § cos 0, (340)
ud, = — UL (0% 2—b%—%) (3 cos20—1), (34¢)
uty = 2U % —4sin O cos b, (34d)

while for the radial hydrodynamic stress components inside (#1,.) and outside (p3,,) the drop
it follows from equations (31a), (33) and (34) that atr = b

l’%rr _ﬁ%rr == UVIb_1(2/M2 + 31“1) (3 cos? 6 — 1): (35)
where g, and u, are the viscosities of the drop and of the medium respectively and
Ul = U+ UL, (36a)
U§ and U} being the steady and oscillatory components of Uy given by
9¢, Ky E2D R(Rq—-1)
1 Y%L
U5 = 20,1 +) QR+ 1) + (g + 2 (369)
2 2¢,)2
and Ul = U J(_R%M_) cos (2wt + o), (36¢)
o1 aw (2R+1) (1 —2¢R —2R) — a?w?(q+ 2)?
where sinod = TR+ @) QRT1) 10 (g+2)? ; (36d)
1 (2R +1)2R — a*w?(q¢+2) (Rg—2R - 2)
I _
cosa, = J(R* ¥ 2w?) (2R +1)2+a?w(q + 2)° (36¢)

define the value and sign of of with A = p,/u, being the viscosity ratio.

(6) Flow due to Fp

In figure 1 we have defined the total deformation D in terms of the drop shape parameters
d; and dj. We write this as the sum of a steady component D, and an oscillatory component D

D, = D,+Dy. (37)

28 ) Vol. 269. A.
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When D, is small the equation of the drop surface is taken as

r=b{14+3(D,+Dry) (3cos?f—1)}. (38)
For simplicity let
Dy = Re (H* e2ivt), (39)
H* being a time-independent complex quantity to be calculated, and neglect the effect of drop
deformation on the fluid flow induced by the oscillations of the surface (justified since we are
considering only a first order theory of D,). From equation (38) we obtain

or|ot = $bw(3 cos®0 — 1) Re (1H* e?iot), (40)

which represents the oscillating radial velocity of the surface (r = ).
Ifui' and ui! are the velocity fields inside and outside the drop their boundary conditions are:

uil >0 as r—oo; (41a)

ui' bounded at r = 0; (41b)

W= adl =t r— (41¢)
1p = “2p — 8t 10 — %20 - Y

l’lm 2r0 at r = b> (41d)

where ufl, i} and u}}, ul} are the radial and transverse components of the velocity inside and

outside the drop and pi}y, pil; are the corresponding transverse components of the hydrodynamic
stress in the two phases.
Imposing equations (41) on equations (30) and (315) ylelds

Wil = UR{(16A+19)b-1 — 3(2A+ 3)b-33} (3 cos? 6 — 1), (424)
uly = — UF{3(16A +19)b~1r — 15(2A + 3)b~3r3} sin 0 cos 0, (42b)
ubt = UR{ (19X +16)b%2 — 3(3A + 2)b%~4} (3 cos2 0 — 1), (42¢)
usp = — 6UH (83X + 2)b%—4sin 0 cos 0, (424d)

and for the radial components of the normal hydrodynamic stress at the drop surface both inside
(pi%) and outside (pi},) the drop we derive from equation (31a) the following relations:

e — i = — Uiy b=1 (192 4 16) (2A +3) (3 cos? 0 — 1), (43)
2 T e2iot

is an oscillatory quantity.

Thus u}' is an oscillating velocity field with no steady components and is given by equations
(42) and (44) once H* is known; this is evaluated later from the balance of the normal stresses
at the interface.

2.8. Steady deformation

The sum (f,,) of the steady electric and hydrodynamic normal stresses at the interface is
balanced by the interfacial tension as a result of changes in surface curvature accompanying
deformation of the drop so as to satisfy the capillary equation

Y0t +b3Y) = £, (45)

where b; and b, are the steady principal radii of curvature at any point of the deformed drop
surface and v is the interfacial tension.
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Adding the time-independent parts of equations (18) and (35) (the flow induced by the
oscillating drop does not produce any time-independent normal stress at r = 4) we obtain on

reduction
S = 36, Ky E3D, cos? 0 + constant, (46)

where @ = 1 RLA+14) + R[15(A+1) +¢(19A+16)] +15a%0*(1 +A) (1 +29)
" 5(1+N[(2R+1)*+ 22w?(g+2)7] :

(47)

For Dy = 0 and D, € 1, b; and &, can be calculated using equation (38), so that substituting
equation (46) into equation (45) yields on reduction:

D — 9¢, K,

= iy O E30). (48)

We note that by using E, the case v = 0 is included in equation (48), as can be proved by
letting @ = 0 in equation (35), adding it to equation (26) and requiring that the resulting total
radial stress is balanced by the interfacial tension so as to satisfy equation (45). Following the
terminology of Taylor (1966), @, is a discriminating function which determines the type of
deformation: the drop becomes (i) a prolate spheroid (D, > 0) when @, > 0 and (ii) an oblate
spheroid (D, < 0) when @, < 0.

Equation (47) shows that @, varies with w. When @, = 0 the mean drop shape is spherical
whatever the field; if Dy % 0, the drop oscillates about the spherical shape. This occurs at a
critical frequency v, corresponding to @, = 0 in equation (47):

VIR[g(19A+16) —5(1+A)] —3R(3A+2) —5(1+ )}

= 4
" 2are]g — 1]{5(1+ )} )
It follows from equation (49) that v, exists when
5(142) (R—1)2
Brz1%ig100 R (50)
also when ¢ = 1, v, =00.
When the equality in equation (50) is satisfied:
v, =0; Dy=0; Dy=0. (51)
It follows from equation (48) that
(i) when Rg > 1
oD,Jov > 0, (52)
the deformation increasing with frequency, and vice versa for Rg < 1, and
(ii) when Rg =1
96K,y (¢—1)% =,
D, = 167_Zq+2)2l:0b’ (53)

which is independent of the frequency. Equation (53) was also derived by Allan & Mason (1962)
for x,, ¥, = o0. This coincidence occurs because, as already discussed, o = 0 for leaky dielectrics
with Rg = 1 and for perfect dielectrics.

When the equalities are satisfied equations (50) and (52) define two curves in the (R, ¢) plane
which are tangent at R = ¢ = 1 and which divide the plane into three regions, each characterizing

28-2
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a class of systems with common modes of deformation summarized below and illustrated in
figure 2.
Class A: ' Rg<1, oD)Jov<0; D,>0; (54a)
5(14A) (R—1)2
. ; 54
class B: 1<Rg<1+16+19/1 B oD,Jov > 0, D, > 0; (540)
. 5(1+2) (R—1)2 oD, D, <0 if v<u, (54¢)
“ class G Rez1+y6o0 & 2 0 20D >0 if v, (54d)
o 100 - I I :
~ B \
R \ (2=0)
— \y
O
8 0} (A=) ) .
i C
1= —— ———— -
. (BC)
! A — IET
B 7 16+194
0.1 | ]
0.01 0.1 1 10 100 1000

R

Ficure 2. Loci defined by equations (54) characterizing sets of systems whose modes of steady deformation are
illustrated in the table below. The equations (54) giving the two curves (AB) and (BC) given by equations (54)
show that for large values of R, (BC) tends to a horizontal asymptote ¢ = 5(1+A)/(16+ 19X), whereas (AB)
tends to ¢ = 0. For both curves g0 as R—>0. We adopt the convention, contained in equations (54), that
points on the lines (AB) and (BC) fall in classes A and C respectively.

4 A B C

t\\j oD, Jov <0 >0 >0

) | D, >0 >0 <0 <)

>0(v>v,)

>
~
ﬁ Curves (AB) and (BC) in figure 2 have the common limit ¢->o0 for R 0; however, when
@) R—00, ¢—>0 on curve (AB), and ¢—5(1+A)/(16+ 19A) on curve (BQ).
@) Thus the mode of deformation of a system is determined by the parameters R, ¢ and A; the
5

effect of A, however, is small as indicated in figure 2 by the dashed (A = 0) and continuous
(A =o00) lines (BC).

®, is a monotonic function of v as is shown by values calculated from equation (47) in figure 3
for systems belonging to classes A, B, and C. For v = 0 equation (47) reduces to

1 (R2 1 3R(2+3A) o 16+ 19/\), (55)

P =GR+ 1) 5(1+A) V5142
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which is the expression derived by Taylor (1966), corrected for a small arithmetic error in
deriving the hydrodynamic stress (Melcher & Taylor (1969)). For all the parameters fixed and
v — 00 equation (47) reduces to
(-1 .
D, = —=% 56
0 ( q + 2)2’ (") )
which corresponds to the expression derived by Allan & Mason (1962) for perfect dielectrics
(equation (53)) for the reason already mentioned.

Q&
(b

((',) /

D, |- —

=25 W N

b

©

!

0! 1 10 102 107 10*
aw

FIGurE 3. Variation of @, with aw calculated from equation (47). The curves are drawn for values of the electrical

variables (shown in the following table) which are representative of the three classes of systems defined in
equations (54). The limiting values of @, are @, and @, at (aw) -0, oo respectively.

class R q A D, D, av,
Aa) 0.1 3 0.1 0.64 0.16 —
B(b) 10 0.2 0.1 0.11 0.13 —
C(c) 100 1 0.1 —0.55 0 ©
C(d) 100 3 0.1 —2.16 0.16 24
C(e) 100 3 10 —2.54 0.16 2

2.4, Oscillatory and total deformations

The total oscillating normal stress f,, at the drop surface can be balanced by interfacial forces
through a time-dependent change in curvature (i.e. an oscillation) of the interface. This change
in curvature must again satisfy equation (45) where b, and b, are now the time-dependent
principal radii of curvature.

By adding the time-dependent parts of equations (18), (35) and (43) we obtain

Jor = Re{[26o Ky E3(Fjs — A F3) — 8wpiy Ay 1H*] €219t} cos? 0 + const. (57)
_3(2+3)) (192 +16) (20 +3)
where Ay = BTN and A, = 2001+ (58)
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Substituting equation (57) into equation (45) and calculating the time-dependent principal
radii of curvature from equation (38) with D, = 0 and D, (< 1) given by equation (39) we obtain

N 2
H* = %@%‘;@iﬁ’ h*, (59)
Fj5— M Ff
® T2 102 )
where h* = LFikA, (60)
k= wuybly. (61)

0.2

-0.4

S — - E = E, cos (wt)

wt

F1cure 4. The time-dependent total discriminating function @, defined by equation (65) calculated for R = 100,
g = 3and A = 0.1 when (i) aw = 10*and: £ = 10 (curvea), k£ = 1 (curveb),k = 0.1 (curve c); and (ii) aw = 10?
and: &k = 10 (curve d), £ = 1 (curve e). At the bottom of the figure, the graph of £ = E cos wi shows that the
drop oscillates twice as fast as the field, the phase angle being determined by equations (634).

Substituting equation (59) into equation (39) yields
_ 9¢,Ky I cos (2wt + o)

ans 2 .
v Bay  Ja+eay (o0 (62)
% 4 f% * _f*
where cosoc}lzh —24-15 , 1nafl=k 57 (63a)
[ @201 —Rg)2(19A+16) [20(1 +2) — (A + 4)]\} )
and L= P B N 2R+ )t awi(g £ 2)2 ) ° (635)

h* being the complex conjugate of /*.
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Thus from equations (37), (48) and (62) it follows that

;960 Ky o
i
where @ =P +I£95_(,2F‘).tio_‘£_,,), (65)

ARRCRN((EY )
is the total discriminating function.
To examine the conditions under which the oscillatory deformation is much smaller than the

steady value we consider the ratio:

Dy _ Icos (20t +a,) (66
D, @, J(1+kN) )

obtained from equations (48) and (62). The dimensionless parameter £, defined by equation (61)

and which plays an important part in characterizing the ratio (Dy/D,), may be considered as the
ratio of the oscillatory hydrodynamic stress (wu,) and the capillary pressure (y/b) at the drop
interface. When (wp,) — oo and (y/b) remains fixed, £ — o0 and (Dy/D,) - 0, the drop surface
being unable to respond to the oscillating stress .

Figure 4 shows the calculated relation between @, and (wt) given by equation (65). It shows
that for large values of £ the amplitude of the oscillation of the drop surface is small (curves a, d)
and that as & decreases Dy, increases (curves b, ¢) until it becomes larger than D, (curve ¢), the
drop oscillating from a prolate to an oblate spheroid. The drop oscillates twice as fast as the field £
(plotted at the bottom of figure 4) and is generally out of phase with it; when £ — 0 the maximum
and minimum deformations tend to occur at £ = E; and E = 0 respectively (curves ¢, ¢).

Rg<1{Rg>1(

1.0

0.5

1
0 0.5 1.0 1.5

F1cure 5. Steady flow field both inside and outside the drop obtained by drawing nine streamlines whose equations
were derived from equations (34) for & = 1. The flow pattern isshown only for the first quadrant, being identical
in the other three because of symmetry, the streamlines being characterized by a constant proportional to .
For Rg < 1 theflowis equator-to-pole, whereas for Rg > 1itis pole-to-equator. Thisfigure isidentical to that given
by Taylor (1966) because the presence of the term (aw) in equations (34) does not change the flow pattern even
if it does change the absolute values of the velocity components (equation (365)). The effect of changing the
value of Rg (< 1 or > 1) on the flow direction is illustrated schematically on the top of the figure.
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2.5. Fluid circulation
Substituting equation (59) into equation (44) yields:

3eo Ky, E20 k. -
= S0ua(L+ A) {1+ B0) sin (20t + o;t). (67)
Inspection of equation (67) shows that the velocity field uj* is 90° out of phase with Dy
(equation (62)) and that its amplitude is a complicated function of R, ¢, A, k£ and (aw), its value

I _
Ur =

remaining finite as (aw) increases to infinity.

Thus the complete velocity field u; is determined, its velocity components being given by
adding equations (34) to (42). The steady components of u; are given by equations (34) in which
U} is replaced by Ug given in equation (364) with (2E2) replacing E3 so as to include the case of
v = 0. The pattern of the flow is identical to that derived by Taylor (1966) for v = 0 to which
equations (34) reduce for » = 0. The effect of increasing » is to decrease the steady velocity
components so that the steady clectrohydrodynamic flow dies out at high v. The calculated
steady streamlines are given in figure 5 and are identical to those given by Taylor (1966) for v = 0.

2.6. Further considerations
(a) Conductive drops in perfect dielectrics

Of the several further cases of physical importance which can be envisaged in terms of limiting
values of the electric and other parameters, we will consider only that for which

X2 =0, R=0. (68)
Substituting equation (68) into equation (154) gives
3¢y Ky Eycos 6

7= J+ e (g2 Ol T el (69)

where 0 < tan—law(¢+2) < 7. Equation (69) for » = 0 reduces to the well-known formula
(Allan & Mason 1962) o = 3¢y K, Eycos 0. (70)
From equations (205) and (68) we obtain Fj, = 0 and hence the steady component of the velocity
field vanishes, whereas from equations (48) and (68) we obtain
96, Ky 1 +aPw?(g—1)2
’ 716y 1+a%w?(g+2)?
which reduces when the drop is a perfect conductor (y; = 0 hence a = 0) to
D, = 5 (E5), (72
which has been already calculated (Allan & Mason 1962) and which is independent of ».

(E3D), (71)

Inspection of equation (71) showsthat D, > 0 and (9D,/ov) < 0 also predicted from equations
(54) since the system belongs to class A.

(b) Surface conductance and convection of charge

In deriving the theory we have neglected the effect of the motion of charge on the drop surface
which is caused by a combination of surface conductance and surface flow, the latter caused by
the unbalanced transverse electric stress /g, and by the oscillating drop surface. We may write this
total flow of charge per unit length of surface as

Qs = Egp/X1a+ Oty (73)
where y;, is the surface resistivity and the other quantities are evaluated at r = .
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When @y is taken into account the rate of increase of ¢ is augmented by —V,Qg (V, is the
two-dimensional divergence on the drop surface) so that the boundary conditions for the electric
potentials, given in complex form in equations (4), reduce, in real form, to

Vo->—FErcosf as r->o0, (74a)

=" at r=2b, (740)

GOKZQ;;%“ OKI%I—;i = —0 at r=29, (74¢)
10V, 1V _Oo _

o o e¥s= at r=b, (74d)

Vi bounded at r=0. (T4e)

Thus the solution for V] and 1}, is complicated by Qg which itself is an unknown function of
and V,. However, since we wish to find the limits of validity of the theory based on the assumption
V, Qs = 0 we may take the latter to be very small so that as a first-order approximation we can
evaluate V, Qg by inserting in equation (73) the values of E,y, o and u,, given in equations (14¢),
(15a), (34d) and (42d) and hence derive the conditions

A 1A
X1 or Xo 0r |’

which represent the restrictions under which the theory applies. We will return to this point later.

’VzQsl < or WzQs| < (75)

In the experiments described below, quantitative confirmation of equations (48), (49), (55),
(56) and (72), and qualitative confirmation of equations (23), (62) and (66) were obtained.

3. EXPERIMENTAL PART

The experiments were performed using 22 different systems consisting of various combinations
of two immiscible phases selected from the liquids listed at the bottom of table 1; the medium
(phase 2) was chosen to have a high viscosity and/or nearly the same density as the drop (phase 1)
so as to effectively eliminate sedimentation.

The electric fields were applied in a rectangular glass cell which had two transparent and flat
glass electrodes (Corning Glass) cemented to the inner walls, to allow viewing either normal or
parallel to the direction of the electric field. The dimensions of the electrodes were 4 x 4 cm (about
0.3 cm in thickness), and the gap in between them was about 1.7 cm. The drops were sufficiently
small (b = 0.02 to 0.1cm) that they could be considered to be subjected to a uniform electric
field when lying in the central region of the condenser gap.

The electric fields were applied across the electrodes from stabilized power supplies: (i) 0 to
10kV (v = 0), (ii) 0 to 16kV (v = 60Hz sine wave), and (iii) 0 to 8kV (v from 0 to 10Hz,
square wave, the only design available to us) which was obtained by a connexion in series of a
pulsed square-wave and a d.c. power supply. The frequency, electric potential and wave form
were measured before each experiment by means of an oscilloscope.

The events were viewed through a microscope along and/or perpendicular to the field direction
and were generally photographed with a Nikon 35 mm camera attached to the microscope or by
cinematography, at speeds up to 1000 pictures per second with a Hycam cine-camera.

The flow patterns were visualized by adding tiny guanine crystals (Mearl Corp., Ossining, N.Y.)
to the suspending and suspended phases; the experiments were conducted in a room whose
temperature was controlled at 22 + 1°C; the values of the conductivities and dielectric constants

29 Vol. 269. A.
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of the systems were taken to be those reported by Allan & Mason (1962) and were assumed
constant for all the silicone oils and for the watery phases; the viscosities were measured with a
rotational viscometer (Epprecht Rheomat) and the interfacial tensions were measured by the
shear-deformation method (Rumscheidt & Mason 1961) or by the ring method (Cenco).

TABLE 1. PROPERTIES OF THE SYSTEMS

Y
, system phase 1/2 dyncm™'  p,/P A K, q X1/Qm als R
g class A,
~ 1 N M, 5.5 54 1.2 2.77 2.3 1x10° 2.4x 1072 < 3x10-2
— 2 T M, 3.9 54 3.2 2.77 2.2 2.2 x 10° 5.4x10-2 < 7x10-2
< >_‘ 3 Z M, 3.0 54 0.2 2.77 1.9 2.8 x 10° 6.9%x 102 < 9x10-2
>'( 4 N M, 5.5 1210 5x102 2.77 2.3 1x10° 2.4x 102 < 3x 102
o ~ 5 T M, 3.9 1210 0.14 2.77 2.2 2.2 x 10° 5.4%x 102 < 7x102
Qﬁ E 6 Z M, 3.0 1210 8x 10-3 2.77 1.9 2.8 x 10° 6.9 x 102 <9x10-2
= O class A,
I O 7 YN 13 65 1x10-* 6.30 12,7 1x10% 5.6 x 107 1x10-%
=w 8 Y, N 3.0 65 1x10-* 630 127  1x 10 5.6x10~7  1x10-5
-l N 9 Y, T 26 174 6x10-° 6.04 13.2 1x10% 5.3x 1077 4.5x 10—
5 p 4 10 Y, T 7.6 174 6x10-° 6.04 13.2 1x10% 5.3x 1077 4.5x 104
EQ 11 Y, M; 30 54 2x10- 2.77 29 1x10% 2.4%x 1077 <3x10°¢
ah 12 Y, M, 9.0 54 2x10-* 277 29 1x 10 24x107 < 3x10-6
Q<0 13 Y, M, 30 1210 8x10-¢ 277 29 1x 108 24x10-7 < 3x10-5
9‘2 14 Y, M, 9.0 1210 8x 106 2.77 29 1x104 2.4x 1077 < 3x10-¢
Eé class C
el 15 M, N 5.5 65  0.15 6.30 044  >3x100 > 1.67 > 30
16 M; N 5.5 65 0.83 6.30 0.44 > 3 x 100 > 1.67 > 30
17 M, N 5.5 65 1.85 6.30 0.44 > 3 x 1010 > 1.67 > 30
18 M, T 3.9 174 3x 102 6.04 0.46 > 3x 1010 > 1.60 > 14
19 M, T 3.9 174 6x 1072 6.04 0.46 > 3 x 100 > 1.60 > 14
20 M, T 3.9 174 1.34 6.04 0.46 > 3 x 1010 > 1.60 > 14
21 M, Z 3.0 10 0.5 5.33 0.52 > 3 x 1010 > 1.41 > 107
22 M, Z 3.0 10 5.4 5.33 0.52 > 3 x 100 > 1.41 > 107
Liquids

M,, M;, M, silicone oils 510F  p = 1.00g/cm® u
M,, M;, M, silicone oils 200F  p = 0.98g/cm® u
N oxidized castor oil p = 0.98g/cm3® u

5; u=234; u = 1210 P (Dow Corning)
10; 4 = 54; u = 120P (Dow Corning)
65 P (Baker Castor Oil Co., N.Y.)

I

T sextolphthalate p=104g/cm® p=174P (Howard & Sons Ltd, Canada)
Z Ucon 0il LB-1715 p = 1.04g/cm® g = 10P (Union Carbide)
< Y5Y, distilled water; distilled water 4+ 1% vol. Tween 20 (Atlas)

In the Theoretical Part we have employed SI units, except for writing the permittivities of
the phases as the product K; ¢, and K, ¢, of the dielectric constants K, K, and the permittivity of
free space ¢, (Harnwell 1949). However, in presenting the experimental results we have used
practical units, for example the poise (1P = 10-'kgm=!s~1) for the viscosity, and (kV/cm)
instead of (V/m) for the field intensity.

THE ROYAL A
SOCIETY /L

4. RESULTS AND DISCUSSION
4.1. Steady deformation
The equations derived in the Theoretical Part predict a steady deformation having the form:
D, = m,(E3b), (76)
where m, = (9¢,K,/16y) D,. (77)
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Over the range 0 to 5kV/cm of &, and with different values of 4 for each system, the measured
D, and Dg, of the 22 systems listed in table 1 showed a linear variation with (E2b) as predicted by
the theory. Experimental values m;* were evaluated by the method of least squares (table 2).
It was found that the systems fell into classes A and C (equations (54), figure 2); those belonging
to class A were further subdivided into A; andiA, in which m, > mg, and m, ~ mg, respectively.
An example of each class is shown by the linear plots in figure 6.
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Ficure 6. Linear variation of D with (£3b) showing the three modes of deformation which characterize the three
classes of systems shown in table 1. The deformationsat v = 0 (open points) and at v = 60 Hz (closed points) are
shown for system 1 (square points, A,), system 7 (circular points, A,) and system 16 (triangular points, C).
A positive slope indicates deformation to a prolate spheroid and a negative slope deformation to an oblate
spheroid. The continuous lines have been fitted by the method of least squares.

(a) Class Ay: systems 1 to 6

Here Rg < 1; 1 x 10° < ¥, < 2.8 x 10 the suspending phase in all the systems being a silicone
oil.

@, is given by equation (55); @y, is given approximately by equation (56) to which equation
(47) reduces under the condition aw ->00. Thus from equation (77) m, and mg, can be calculated
and compared with the experimental values mg and mg, (table 2). As predicted mg > mg, > 0,
the drop deforming into prolate spheroids which are more clongated for v = 0 than for v = 60 Hz;
however the ratios mg [m, and mgy/mg, fell between 1.0 and 3.3; 1.6 and 4.2 respectively. Possible
reasons for this discrepancy are discussed later.

(b) Class A, systems 7 to 14

Here Rg < 1; y; ~ 1 x 104, the drop being water or water containing a surfactant to lower vy,
and (aw) ~ 0 when v € 60Hz. Thus equation (55) gives @, = @4, and, since R ~ 0 for these
systems, Dy ~ Dg, is given by equation (72) and @, = @4, ~ 1 (equation (55)).
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The comparison between experimental results and theory (table 2) shows that, as predicted,
mgy ~ mi. However, the ratios mgy/mg, and mg [m, again fell between 1.4 and 4.4; 1.7 and 3.9
respectively.

(¢) Class C: systems 15 to 22

Here Rg > 1; x; > 3 x 10, the drop being a silicone oil. Equation (55) gives @, and equation
(47) gives @,; however for v = 60 Hz it can be seen that @, is again given approximately by
equation (56) since a is large and hence (aw) — co. Table 2 shows that the predicted signs of the
deformations were always experimentally verified, the systems showing oblate spheroidal defor-
mations at v = 0 (Dy < 0) and prolate spheroidal deformations at v = 60 Hz (Dg, > 0) as
illustrated by the series of photographs in figure 7, plate 6.

TaBLE 2. COMPARISON OF OBSERVED AND CALCULATED DEFORMATIONS
(Eo)max/kv thli
A

my mg Mgo Mgy i \
system? kV-2cm mElmy  mE/mg, V=0 v = 60 Hz
class A,
1 0.24 0.39 0.02 0.03 1.6 1.5 27 120
2 0.31 1.31 0.03 0.04 4.2 1.3 29 241
3 0.38 0.91 0.03 0.10 2.4 3.3 15 206
4 0.23 0.88 0.02 0.02 3.8 1.0 85 458
5 0.30 0.90 0.03 0.03 3.0 1.0 73 726
6 0.38 0.93 0.02 0.06 2.4 3.0 64 941
class A,
7 0.24 0.51 0.24 0.51 2.1 2.1 2 x 103 17
8 1.05 2.04 1.05 2.20 1.0 2.1 2x 108 17
9 0.12 0.36 0.12 0.35 3.0 2.9 4x 103 19
10 0.40 1.58 0.40 1.67 3.9 4.2 4x10% 19
11 0.05 0.19 0.05 0.22 3.8 4.4 5x 103 6
12 0.15 0.25 0.15 0.26 1.7 1.7 5x 103 6
13 0.05 0.19 0.05 0.16 3.8 3.2 23 x 103 30
14 0.15 0.35 0.15 0.29 2.3 1.9 23x 103 30
class G
15 —0.06 —0.07 0.03 0.03 1.2 1.0 8 13
16 —0.07 —0.10 0.03 0.03 1.4 1.0 9 13
17 —0.08 —0.13 0.03 0.04 1.6 1.3 12 13
18 —0.09 —0.17 0.04 0.06 1.9 1.5 13 32
19 —0.09 —0.19 0.04 0.05 2.1 1.2 13 32
20 —0.12 —0.33 0.04 0.09 2.7 2.2 19 30
21 —0.17 —0.19 0.03 0.06 1.1 2.0 3 9
22 —0.21 —0.24 0.03 0.03 1.1 1.0 6 9

+ Systems defined in table 1.
1 Calculated from equation (83).

Note. The maximum standard deviation of m* from the least mean square regression line was 10 %,.

According to the theory, systems using this group should exhibit a critical frequency v, at which
D,, = 0. Thus using system 18 and square-wave variable frequency fields we obtained D, = 0
at v, = 2.5 Hz, the curve of m,/mg, against v being shown in figure 8. The measured v, = 2.5 Hz
is somewhat higher than the theoretical value (1.7 Hz) calculated from equation (49). Good
agreement with the experimental findings was obtained when ¢ was taken to be 0.55 instead of
0.46 as can be seen in figure 8, curve ¢,; it can also be shown that a change in the parameter R
does not produce significant change in the curves ¢; and ¢,, at least in the present case. This
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a.c. d.c.

Ficure 7 Ficure 9

Ficure 7. Photographs of electric deformation of a silicone oil drop suspended in castor oil (system 16). The drop is
prolate in the a.c. electric field (v = 60Hz) and oblate in the d.c. electric field (v = 0), the deformation
increasing with the field £, = 1.5, 2.5, 3.5kV/cm from the bottom to the top; b = 0.60 mm.

Ficure 9. Electric burst of system 7 at v = 0 with 4 = 0.03 cm; the time elapsed from frame 1 to 6 was about 0.1s.
The drop was split into two main parts connected by a thin thread which before breaking down rendered the
system conductive by bridging the two electrodes. At burst E, = 2.8kV/cm.

(Facing p. 314)
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suggests that accurate measurements of the dielectric constants of the phases are crucial to a
quantitative test of equation (49).

The effect of the drop size on v, was also tested with system 18 over the range of 4 from 0.02
to 0.1 cm. No systematic variation of v, with 4 could be detected from which we concluded that
v, was independent of 4 as predicted by equation (49).

4.2. Fluid flow

Several systems in class A, were examined for electrohydrodynamic flow in the phases but, as
expected since R ~ 0 and hence Fj, ~ 0 (equation (205)), none could be detected at v = 0, 60 Hz.
In system 3 of class A; (Rg < 1), the pattern of the flow field at » = 0 and at » = 1 Hz was as
predicted by equations (23), i.e. equator-to-pole. Similarly, system 16 (class C, Rg > 1) was

1

Img,

*
v

5 10
v/Hz
Ficure 8. Illustrating the dependence of the ratio (m}*/mg;) upon the field frequency v for system 18 with b = 0.64mm
and E, varying between 0.1 to 4kV/cm. The points are the experimental values and the lines ¢; and ¢, were

calculated from equations (48), (53) and (76) for the values of the electrical parameters in the following
table. The arrows on the curves indicate v, calculated from equation (49).

R q a v/Hz
¢, 21 055 25 2.5
6 21 046 25 16

pole-to-equator both at » = 0 and v = 1 Hz; this confirms the observations reported by Taylor
(1966) at v = 0. As v was increased beyond 1 Hz, the flow rate diminished rapidly as would be
expected from equation (365). Thus, qualitatively, the theory of electrohydrodynamic flow in
both steady and alternating fields was confirmed.

4.3. Oscillatory deformation

Itis readily shown from equation (66) that Dy < D, for all the systems used when 4 > 0.02 cm.
However, at v = 1 Hz, the smallest attainable, with system 21, which had a small %, the drop
could be seen to oscillate twice as fast as the field. Small oscillations of the drop surface were also
observed for systems 11 and 16 at v = 1 Hz when very high fields were applied, the drop being
close to burst. This is in accordance with equation (62). As v increased the amplitude of the
oscillations became smaller as predicted by equation (66) since £ increased.
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4.4. Drop burst

At high electric fields two distinct modes of burst were observed by Allan & Mason (1962) in
their experiments at v = 0, one when Dy > 0 and the other when D, < 0. An approximate theory
based on the idea that burst occurs when the normal electric stress can no longer be contained
by the interfacial tension served to explain the first mode of burst (Allan & Mason 1962); in the
light of the theory we have presented we can call this ‘electric burst’ since it characterizes systems
in which Fj, = 0 (class A,) and there is no electro-hydrodynamic flow inside and outside the
drop. We have found that the second mode, in which an oblate spheroid burst by being squashed
occurred in systems of class C at zero or low frequencies where the hydrodynamic stress contri-
buted to burst; we define this as ‘electrohydrodynamic burst’. The classification of the systems
given in equations (54) and illustrated in figure 2 suggests that electrohydrodynamic burst
should also characterize all the systems for which D, & 0 and Fj, + 0 (i.e. R + 0 and Rq + 1)
even when f,, produces a prolate deformed drop. This suggests that the electrohydrodynamic
burst should show different mechanisms depending upon the contribution of the shear stress
which depends upon the frequency of the applied field (equation (35)), upon the electrical
properties of the systems (equations (54)) and upon the drop radius since at burst the deformation
is large.

Electric burst is illustrated by the cinematographs in figure 9, plate 6, taken in system 7 at
v = 0; similar behaviour was found at v = 60 Hz. When the electric field was increased very
slowly up to the value at burst (a rapid increase of £, may produce different modes of burst since
the drop cannot rearrange its shape to balance the increasing electric stress), the drop elongated
until it formed a rod with rounded ends which then split into two main parts joined by a thread
which subsequently broke into a number of small drops.

‘T'wo modes of electrodynamic burst are illustrated by the cinematographs in figures 10 and 11,
plate 7, with system 16 at v = 0, v = 1 Hz respectively; for this system the calculated v, = 8 Hz.

Figure 10, plate 7, shows that at ¥ = 0 the drop flattened into an oblate spheroid (frame 1)
and lost its symmetrical shape because of the migration towards the positive electrode as already
observed (frame 2); after a further increase in E,, a jet of the suspending medium penetrated
into the migrating drop of the rear (frame 3) generating a column of phase 2 surrounded by a
thin film of phase 1 (frame 4). The column enlarged while the phase 1 film drained (frames 5, 6)
until it collapsed (frames 7, 8) generating five big droplets and a myriad of tiny ones (frame 9).

Figure 11 shows that at » = 1 Hz the mechanism was somewhat different probably because of
the absence of migration and of the decreased effect of the shear stress (equation (35)), the drop
becoming flattened into a biconcave lens with the sharp edge normal to the electric field from
which tiny drops were expelled. The phenomenon is illustrated by photographs taken in different
directions with respect to the field.

Other more complicated types of electrohydrodynamic burst were observed in other systems;
for example in system 22 at v = 0 the drop flattened and then folded over and twisted until it was
no longer coplanar, the manner of burst probably being influenced by the simultaneous electro-
phoretic migration occurring at » = 0. Further experimentation is needed before the various
modes of burst can be characterized in detail and a complete theory proposed.
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5. CONCLUDING REMARKS

We wish to emphasize that the theory was developed after performing the experiments, and for
this reason a complete experimental test of it is not available from the data. The theory does,
however, explain most of the observations: deformation classes A;, A, and G, the existence of v,
in class C and the reversal in electrohydrodynamic streaming at Rg = 1.

Experiments were not made with systems belonging to class B, nor falling on line (AB) or (BC)
of figure 2, nor falling in class C with v, > 60 Hz or ¢ = 1 for which v, =co. Frequencies high
enough (> 60 Hz) were not used to establish if (0D,/0v) < 0 in systems of class A, as predicted by
equation (71). It would be interesting to include such experiments in future work.

The most serious discrepancy was that in nearly all cases (m;f/m,) > 1, indicating larger defor-
mations than predicted. This is similar to the findings of Allan & Mason (1962) at v = 0 who
suggested, without proof, that the discrepancy may have been an electrocapillarity effect by
which the apparent y was lowered by the accumulation of a net electric charge at the interface.

Effects which we wish to examine further are surface conductance and convection of charge
neglected in the theory. Considering surface conductance first, we note from equation (73) that

its contribution to V, Qg is iwt
s v, Pu _ g Relde™) oy (78)
X12 bX12
which when substituted into equation (75) yields
lez bx1s R?+ azw%)
¥, >2 or " > 5 A/(1 e (79)

as conditions to be satisfied for the theory to apply. We do not know the values of y,, for our
systems, but it is evident from equations (78) and (744d) that a finite y,, will produce an increase
of the algebraic value of the charges facing the negative electrode and a decrease of those facing
the positive electrode, hence producing an increase in the algebraic value of D, (the effect is
analogous to that of increasing the conductivity of the drop) which will be still linear in £2 but not
in (E3b) because the term ()y455) contains b.

Our results did not show a systematic deviation from linearity when D, was plotted against
(E%b) when both E, and b were varied. A small y,, might explain (m}/m,) > 1 for systems of
class A; and class A, both at » = 0 and at v = 60 Hz. However, for class C it should have yielded
(mg|my) < 1 instead of (mg/my) > 1. The evidence for this effect is therefore inconclusive.

The contribution to V, Qg from convection of charge, equivalent to a streaming current, is

272 K3 E}
5(pq + o)

(1 —Rq) (Sy+5,)

from equation (73)

V,y(ouy,) = S§(2cos?20—1) cos b, (80)

where S = N/{(2R+1)2+a2w2(q+2)2}cos (wt—ex,) (81a)

and S, = 45/31\1%?21;% sin (2wt 4 od1), (814)
— 2 2¢,)2

5, = (Rg—1) [R+(R?+ a*w?) cos (20t + o) ] . (810)

(2R +1)% + a*w?(q + 2)*
Substituting equation (80) into equations (75) we obtain as a condition for validity of the
theory Ey < (Ey) max (82)
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(Eo) max = ! A/IIQ\/gmin (83)
3eg Ky X1
and gmin is the smallest of the following four functions:
_ (2R + 1)2+a2w2(q+2)w2
1+ a*w¥q
= ok [ (34)
_10(1 4+ A){(R* + a®w?) 0y2
83 = k(3}(+2 I[l—R ‘ \/(l+k A?)’ (840)
1 +é120)2q2
g1=gR Braot (844)

Equation (83), unlike equation (79), imposes a restriction on the upper limit of the field strength
to which the theory is applicable. Our experimental conditions, in which E, was varied from
0.01 to 5kV/cm, satisfied equation (82) in most of the systems as shown in table 2 where (E,) max
calculated from equation (83), is given. Furthermore, inspection of equations (80) and (744)
shows that the effect on do/f of the convection of charge is proportional to £3 (2 cos? 0 — 1), which
leads to the result that (i) the drop is no longer ellipsoidal and (ii) D, is not linear in E2b, neither
mode of behaviour having been observed. We can thus conclude that the convection of charge
at the interface did not play an important role in our experiments.

Other possible reasons for the discrepancy are: (i) limitations in the electric model assumed in
the theory which is described by the boundary conditions listed after equation (2), (ii) effects of
space charges which were taken to be zero in equation (2), and (iii) effects due to diffuse ionic
layers at the interface. These, together with the inclusion of the inertial terms in the Navier—
Stokes equations at high v, are aspects which ought to be examined in any further theoretical
and experimental studies.

Finally we mention two interesting possibilities which are suggested by the theory. In figure 15
it is shown that the polarization of the drop is reversed when going from Rg > 1 to Rq < 1,
suggesting that a pair of such drops will repel one another; in a study of the interaction of pairs of
immiscible drops in a third liquid (Torza & Mason 1970) we observed repulsion in several
systems in which one drop had Rg > 1 and the other Rg < 1. In two phase emulsions of class C,
the application of a field of frequency v, may be expected to cause electric breaking with unlimited
growth in drop size since no electric deformation and hence burst would occur as the drops
increase in size; otherwise there would be an upper limit to the & attained by coalescence at a
given field strength.

This work was assisted by the Defence Research Board of Canada (DRB grant no. 9530-47).
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FiGURE 7 Ficure 9

Ficure 7. Photographs of electric deformation of a silicone oil drop suspended in castor oil (system 16). The drop is
prolate in the a.c. electric field (v = 60 Hz) and oblate in the d.c. electric field (v = 0), the deformation
increasing with the field £, = 1.5, 2.5, 3.5kV/cm from the bottom to the top; b = 0.60 mm.

FiGure 9. Electric burst of system 7 at v = 0 with b = 0.03 cm; the time elapsed from frame 1 to 6 was about 0.1 s.
The drop was split into two main parts connected by a thin thread which before breaking down rendered the
system conductive by bridging the two electrodes. At burst £, = 2.8 kV /cm.
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Ficure 10

IGURE 10. Mechanism of the electrohydrodynamic burst for system 16 at v = 0. The time elapsed
from frame 1 to 9 was about 20s, which was much longer than for the usual case of electric
burst. The burst did not produce breakdown of the dielectric medium because the drop was
much less conductive than the medium (R > 30), and it did not bridge the electrodes after
bursting. The applied field £, = 4.5kV/cm and b = 0.08 cm.

I B

1IGURE 11. The photographs of the burst of two drops from system 16 at v = 1 Hz showing the
phenomena from two directions. In (A) the direction of E is vertical and in (B), photo-
graphed through the electrodes, normal to the sheet. The burst mechanism following the
formation of a biconcave lens appears somewhat different in the two cases probably because
of the difference of the drop radii and applied fields: (A) b = 0.04cm and E, = 4.5kV/cm;
(B) b = 0.06cm and E, = 4.0kV/cm. The drop in frame 1B appears smaller than that in
frame 1 A because of smaller magnification.
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